178 research outputs found

    Can Everett be Interpreted Without Extravaganza?

    Full text link
    Everett's relative states interpretation of quantum mechanics has met with problems related to probability, the preferred basis, and multiplicity. The third theme, I argue, is the most important one. It has led to developments of the original approach into many-worlds, many-minds, and decoherence-based approaches. The latter especially have been advocated in recent years, in an effort to understand multiplicity without resorting to what is often perceived as extravagant constructions. Drawing from and adding to arguments of others, I show that proponents of decoherence-based approaches have not yet succeeded in making their ontology clear.Comment: Succinct analysis forthcoming in Found. Phy

    Analysis of the instantaneous Bethe-Salpeter equation for qqˉq\bar{q}-bound-states

    Full text link
    We investigate the structure of the instantaneous Bethe-Salpeter equation for qqˉq\bar{q}-bound states in the general case of unequal quark masses and develop a numerical scheme for the calculation of mass spectra and Bethe-Salpeter amplitudes. In order to appreciate the merits of the various competing models beyond the reproduction of the mass spectra we present explicit formulas to calculate electroweak decays. The results for an explicit quark model will be compared to experimental data in a subsequent paperComment: 11 pages, RevTeX, TK-93-1

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore